19

- 3. The process of claim 2, wherein the catalyst comprises at least one of iron, cobalt, nickel, titanium, molybdenum, tungsten, aluminum, potassium, cesium, calcium, magnesium, barium, zirconium, osmium, uranium or a lanthanide, ruthenium, platinum, palladium, or rhodium.
- **4**. The process of claim **2** wherein the catalyst comprises a ruthenium species.
- 5. The process of claim 2 wherein the catalyst comprises a nickel species.
- 6. The process of claim 2 wherein the catalyst is provided as at least a powder, granules, foil, a coating, bulk material, or a porous pellet.
- 7. A process for growing a crystalline gallium-containing nitride, the process comprising:
 - providing a high pressure apparatus comprising galliumcontaining feedstock in one zone, at least one seed in another zone, an azide mineralizer, at least one metal, and a catalyst within a vicinity of either or both the one zone or/and the other zone, the azide mineralizer and the metal being provided in a predetermined ratio such that nitrogen generated by decomposition of the azide mineralizer and a hydrogen gas species generated by reaction of at least the metal with a supercritical ammonia are in a ratio of approximately 1:3 and greater;
 - processing one or more portions of the gallium-containing feedstock in the supercritical ammonia to provide a supercritical ammonia solution comprising at least gallium containing species at a first temperature;
 - growing crystalline gallium-containing nitride material from the supercritical ammonia solution on the seed at a second temperature, the second temperature being char-

20

acterized to cause the gallium containing species to form the crystalline gallium containing nitride material on the seed:

- generating the hydrogen gas species from at least the reaction between the metal and the supercritical ammonia fluid; and
- processing the hydrogen gas species using at least the catalyst to convert the hydrogen gas species and a nitrogen gas species to the supercritical ammonia fluid.
- 8. The process of claim 7 wherein the processing of the hydrogen gas species and the nitrogen gas species is governed by $N_2+3H_2=2NH_3$.
- 9. The process of claim 7 wherein the ratio of approximately 1:3 ranges from about 0.8:3 to 1:3.8.
- 10. The process of claim 7 wherein the ratio of approximately 1:3 ranges includes any ratio greater than 1:3.
- 11. The process of claim 7 wherein the ratio of approximately 1:3 ranges from about 0.9:3 to 1:3.3.
- 12. The process of claim 7 wherein the catalyst comprise a 20 nickel species.
 - 13. The process of claim 7, wherein the catalyst comprises at least one of iron, cobalt, nickel, titanium, molybdenum, tungsten, aluminum, potassium, cesium, calcium, magnesium, barium, zirconium, osmium, uranium or a lanthanide, ruthenium, platinum, palladium, or rhodium.
 - 14. The process of claim 7 wherein the catalyst comprises a ruthenium species.
- 15. The process of claim 7 wherein the catalyst is provided as at least a powder, granules, foil, a coating, bulk material, or a porous pellet.

* * * * *